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How Do You Choose? 

1-2 

Part A 
•  Buck regulator basics 

-  Basic functions 
-  Filter design 
-  Fixed frequency vs. variable 

•  Fixed frequency control 
-  Voltage mode control 
-  Current mode control 
-  Emulated current mode control 

Part B 
•  Variable frequency control 
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Buck Regulator 

•  Step down only 
•  “Chop up” the input voltage 
•  Send to averaging filter 
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Pretty simple – right? 

VOUT = Duty Cycle ×  VIN
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Synchronous Buck Waveforms 

Continuous  
Conduction  
Mode 
 
•  Inductor current 

flow is continuous 
during the switching 
cycle 

Duty CycleCCM =
tON
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Synchronous Buck Waveforms 

Continuous  
Conduction  
Mode 
 
Switch turn ON 
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Synchronous Buck Waveforms 

Continuous  
Conduction  
Mode 
 
Power transfer 
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Synchronous Buck Waveforms 

Continuous  
Conduction  
Mode 
 
Switch turn OFF transition to SR turn ON 
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Synchronous Buck Waveforms 

Continuous  
Conduction  
Mode 
 
Inductor reset 
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Synchronous Buck Waveforms 

Continuous  
Conduction  
Mode 
 
Transition for next cycle 
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Synchronous Buck Waveforms 

Discontinuous  
Conduction  
Mode 
 
•  Inductor current flow is 

discontinuous during 
the switching cycle 
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Synchronous Buck Waveforms 

Discontinuous  
Conduction  
Mode 
 
•  First part is the same as 

CCM Mode 
•  High side switch turns ON 
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Synchronous Buck Waveforms 

Discontinuous  
Conduction  
Mode 
 
Switch ON 
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Synchronous Buck Waveforms 

Discontinuous  
Conduction  
Mode 
 
•  Switch turn OFF 
•  SR turn ON ISW 

ISR 

SW 

VOUT 

IL 
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Synchronous Buck Waveforms 

Discontinuous  
Conduction  
Mode 
 
•  SR turns OFF at zero 

current in inductor ISW 

ISR 

SW 

VOUT 

IL 

HDVR 

LDRV 
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Synchronous Buck Waveforms 

Discontinuous  
Conduction  
Mode 
 
•  Freewheeling interval 
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L-C Filter Design 

•  Inductor design 
for ripple current 

ΔIL =
VIN −VOUT( )  ×  D ×  TS

L

•  Ripple current is generally 10% to 30% of full load current 

•  Capacitor selection for general purpose 
-  Select TYPE based on ESR and ESL 
-  Voltage ripple =  impedance x inductor ripple 
-  Select VALUE based on corner frequency of ~1/10 of 

desired crossover frequency 

VIN x D

RDS(ON_SR) 

RDS(ON_SW) 
RLL

D
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VOUT

ZOUT

RLOAD

ZLZIN

C1 C2

ESR2ESR1
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Output Capacitors 

Type of Cap Advantages Disadvantages 

Ceramic Small size, low cost, low ESR, 
high ripple current rating 

DC bias effects, low 
capacitance, cracking 

Aluminum 
Electrolytic 

High capacitance, low cost, good 
for high voltage 

High ESR, low ripple current 
rating, temp issues, large size 

Aluminum 
Polymer 

High capacitance, low ESR, high 
ripple current rating 

Expensive, fewer 
manufacturers, large size, 
voltage rating 

Tantalum 
Polymer 

High capacitance, low ESR, high 
ripple current rating, small size 

Expensive, fewer 
manufacturers, voltage rating 

Output capacitors will determine output ripple, transient response and 
greatly impact the compensation 



Output Inductors 

1-18 Texas Instruments – 2014/15 Power Supply Design Seminar   

Output inductors will also determine output ripple, transient 
response and greatly impact the compensation 

Type of Cap Advantages Disadvantages 

Drum Core Low cost, many vendors, 
high Isat, higher inductances 

Can be unshielded, high 
core loss, high DCR, 
hard Isat 

Molded Core Very high Isat, easy to shape 
into many sizes, shielded, soft 
Isat 

High core losses, low 
inductance range 

Shaped Core Low core loss, low DCR, high 
current, shielded, high 
inductance range 

High cost, hard Isat, not 
suitable for low profile 

Power Bead Low core loss, low DCR, 
excellent for multiphase 

Low inductance, hard 
Isat 



Filter AC Response 
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Corner frequency ~ 5 kHz 

ESR zero ~ 21 kHz 

ESL zero ~ 240 kHz 

Filter Response
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Filter Design for Transient Response 
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•  Select L for current slew rate 

•  Select capacitance VALUE based on support of 
output voltage while current is increasing 

 

ΔVC = ΔI2

2 ×  VIN −VOUT( )  ×  L
C

ΔIL =
VIN −VOUT( )  ×  D ×  TS

L

Capacitor Discharge

¨,/

¨9&
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•  Propagation delays limit the minimum controllable pulse width 

•  Below minimum controllable on-time, pulse skipping could occur 

•    

•  Example – TPS40170, min on-time is 100 ns max 
-  VIN = 60 Vmax 
-  VOUT = 5 V or 3.3 V 
-  Frequency = 600 KHz (+10% shift) 

•  For a 3.3 V output, the frequency would need to be lowered to ensure 
no pulse skipping 
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Minimum Controllable On-Time 

TonMIN ≤
VOUT

VIN _ max  ×  fmax

TonMIN ≤ 5 V
60 V ×  600 kHz ×  1.1

= 140 ns

TonMIN ≤ 3.3 V
60 V ×  600 kHz ×  1.1

= 91 ns
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Fixed Frequency vs. Variable Frequency 

•  Fixed frequency operation (Part A) 
–  Synchronize multiple devices 

•  Eliminate beat frequencies between multiple converters 
•  Ripple cancellation to reduce losses in capacitors and PCB 

traces 
–  EMI peaks consistent at any operating mode 
–  Minimum controllable pulse width 

 
•  Variable frequency operation (Part B) 

–  Easier to compensate 
–  Lower peak EMI, higher average 
–  Faster load transient response 
–  Could be lower cost due to lower component count 
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Fixed Frequency Control 
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Voltage Mode Control Introduction 

+

+

PWM Comparator

VOUT
Power Stage
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Divider
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Voltage Mode Control – Basic Operation 

•  Power switches generate a square wave 

•  Output inductor and output capacitor 
form a low pass filter 

•       (CCM) 

•  Type 3 compensator generally required 

VOUT = D ×  VIN
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Voltage Mode Control – Power Stage 

H
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Voltage Mode Control – Pulse Width Modulator 

•  If the output voltage is too low, the duty 
cycle is increased 

•  If the output voltage is too high, the duty 
cycle is reduced 

•  Gain of the modulator: HMod =
VIN
VRamp

PWM Comparator
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Voltage Mode Control – Feed Forward 
•  As	
  VIN	
  is	
  increased,	
  the	
  gain	
  increases.	
  Not	
  good	
  for	
  wide	
  input	
  voltage	
  ranges.	
  

Voltage	
  feed	
  forward	
  fixes	
  this	
  issue.	
  

•  Gain	
  of	
  the	
  modulator:	
  	
  

•  Feed	
  Forward	
  increases	
  the	
  ramp	
  amplitude	
  propor@onal	
  to	
  the	
  input	
  voltage	
  

HMod =
VIN

VRamp
=

VIN
K ×  VIN

VIN

VCLK

VCOMP

PWM

RAMP

MInimum OFF Time

t-Time
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Why Do We Compensate? 

Output Voltage 
(AC coupled) 
50 mV/Division 
 
Output Current 
500 mA/Division 

100 µs/Division 
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Voltage Mode Control – Compensation 
Type 3 Compensator 

•  Type 1 compensator – single dominant pole 

•  Type 2 compensator – two poles, one zero 

•  Type 3 compensator – three poles, two zeros 
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Voltage Mode Control Loop Compensation 

•  Use double zero to cancel double pole 

•  Cross 0 dB with -20 dB/decade 
response 

•  Cross 1/10th to 1/4th below the 
switching frequency 

Type 3 Compensator Power Stage + Modulation 
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Voltage Mode Control – Transient Response 

•  Output filter and loop compensation will impact the transient response 

•  Increasing the loop BW will lead to faster recovery time and lower voltage 
deviation 

•  Closed loop impedance of filter multiplied by load step can predict the 
voltage deviation 

Output Current  
10 A/Division 
 
Output Voltage (AC Coupled) 
500 mV/Division Recovery Time 

Voltage Deviation 

200 µs/Division 
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Voltage Mode Control 

Advantages Disadvantages 

Fixed frequency operation High bandwidth error amplifier 
required 

Easy to synchronize to external 
clocks 

Double pole compensation is more 
difficult 

Voltage regulation is independent of 
current 

Inductor value affects the 
compensation 

Single feedback loop VIN affects loop gain (unless using 
feed forward) 

Less susceptible to noise Difficult to control light load efficiency 
modes 

Good load regulation Multiphase operation would require 
an extra current sharing loop 
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Design Example #1 
Voltage Mode – Design Specifications 

Design Specifications 

Input voltage range  10 V to 60 V 

Target output voltage 5 V 

Output current range  0 A to 6 A 

Switching frequency 300 kHz 

Controller  TPS40170  

Operating  Values 
(Theoretical) 
Minimum duty cycle 0.083 

Minimum on-time 0.277 µs 

Maximum duty cycle 0.500 

Maximum on-time 1.667 µs 
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Design Example #1  
Voltage Mode – Design Procedure 

•  Choose switching frequency first  
•  Calculate the output filter components (L and C) 
•  Calculate the power stage components (FETs) 

•  WEBENCH®  
•  Helps calculate all of specific values for design 
•  Allows optimization based on design goals 
•  Gives estimates for loop response and efficiency 
•  Provides a complete schematic and bill of materials 
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Design Example #1  
Voltage Mode – Performance Graphs 

Data is taken with TPS40170 EVM (HPA578) 

Output Ripple 
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Output Current 
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3.83 K

R7
31.6 K

C15
47 nF

C14
220 µF

C13    8200 pF

R6
22.1 K

R5
10.0 K

C18
1 µF

C19
4.7 µF

C20
1000 µF

VOUT

VOUT

20
19
18
17
16
15
14
13
12
11

1
2
3
4
5
6
7
8
9

10

TP5

TP9 TP10 TP11 TP12

TP6 TP7 TP8
1

1

1

21

R11
20.0 K

R13
511

C21
1500 pF

R12
49.9

C16
1 µF

VDD
PGOOD

R3
0 

U1
TPS4017ORGY

ENABLE
SYNC

M/S

TRK

VIN

VIN 10 - 60 V

R2
200 K

R1
1.0 

C7
0.1 µF

C1
2.2 µF

C2
2.2 µF

C3
2.2 µF

C4
2.2 µF

C5
1 µF

C6
120 µF

TP1

TP2

TP3

TP4

J1

J2

1
2

1
2 5 V @ 6 A

Q1
CSD18537NQ5A

Q2
CSD18563Q5A

L1
8.2 µH

C9
22 µF

C10
22 µF

C22
10 µF

C12
10 µF

Caution:
Surfaces may be Hot
High Voltages Present

Connect AGND and PGND to GND 
with 10 mil traces under IC

ENABLE
SYNC
M/S
RT
SS
TRK
FB
COMP
AGND
VDD

UVLO
VIN

BOOT
HDRV

SW
VBP

LDRV
PGND

ILIM
PGOOD

GND
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Design Example #1  
Voltage Mode – Schematic (HPA578) 
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Current Mode Control  
Basic Operation 

•  Peak current mode is more popular than valley 
•  Outer voltage loop + inner current loop 
•  High-side / DCR current sensing 
•  Error amp output controls peak inductor current  
•  Allows current source to replace inductor 

Type 2 Compensation 

PWM Comparator

+
VOUT–

+
–

Power Stage

Compensation

Current
Feedback

Ramp

Reference
Voltage

Voltage Error
Amplifier

Output
Voltage
Divider

+
–

CHF

RCOMP CCOMP
VFB

VREF

RFBT

RFBB

+
– –

S Q

R Q

+
–

CLK

VERR

VCS

VSW

TON



+
– –

S Q

R Q

+–

CLK

+ –
+
– –

S Q

R Q

+–

CLK

+ –

DCR Sensing Sub-Harmonic Oscillation

Resistor Sensing 

¨,2

¨,2

¨,1
¨,0

¨,0

VERR

VERR

¨,1

D

D
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Current Mode Control  
Other Considerations 

•  ∆I0 > ∆I1 > ∆I2  when D < 0.5 

•  ∆I0 < ∆I1 < ∆I2  when D > 0.5  
     (sub-harmonic Oscillation)  
 
•  Requires slope compensation to 

be stable 
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Current Mode Control  
Power Stage + Modulation 
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Current Mode Control Loop Compensation 

•  Cancel load pole and ESR zero by 
placing error amplifier zero and pole 

•  Cross 0 dB with -20 dB/decade 
response 

Type 2 Compensator Power Stage + Modulation 
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Current Mode Control  

Advantages Disadvantages 
Single pole system allows simple 
Type 2 compensation 

Need for slope compensation to 
eliminate sub-harmonic oscillation  
 

Inherent feed forward improves line 
transient performance 

Noise sensitivity at leading edge 
spike 

Easy implementation of  
cycle-by-cycle current limit 

Need for relatively long minimum 
on-time (peak current mode) 

Easy current share across multiple 
converters 



Type 2 Compensation 

Valley Current Feedback

PWM Comparator

+
VOUT–

+
–

Power Stage

Compensation

Ramp

Reference
Voltage

Voltage Error
Amplifier

Output
Voltage
Divider

+
–

CHF

RCOMP CCOMP
VFB

VREF

RFBT

RFBB

+
– –

S Q

R Q

+
–

CLK+

Emulated
Ramp

S&H

+

VERR

VECS

VCS

VSW

TON

S&H S&H

S&H
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Emulated Current Mode Control  
Basic Operation 

•  Low-side current sensing during free-wheeling 
•  Sample & hold valley current before high-side 

switch turns on 
•  Reconstruct buck switch current  
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Emulated Current Mode Control  
Leading Edge Spike 

•  The on-time of conventional peak current 
mode controller is limited by the leading 
edge spike 

•  R-C filtering distorts the waveform 
•  Leading edge blanking limits the minimum 

on-time 
•  Emulated current mode ensures a clean 

current waveform during high-side switch 
on-time 
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R-C Filter 

Leading Edge Blanking 

Waveform Distortion 

Unavailable Area 

Emulated Current Mode 

Sample & Hold Sample & Hold 

Reconstructed Ramp 



 

 

RAMP

RAMP

CRAMP

tON

Sample and Hold
DC Level 10 x RS V/A

5 µA/V x (VIN – VOUT)

RS IL

25 µA

Inductor Current
Reconstruction

Slope
Compensation

TO PWM
Current Sense

Amplifier

S&H

HO_ENABLE
CSG

CS

-

+
AS = 10
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Emulated Current Mode Control  
Ramp Reconstruction 

•  Proper selection of the RAMP capacitor 
(CRAMP) depends upon the value of the output 
inductor (L) and the current sense resistor (RS) 

•  	
  	
  RS  ×  AS  = 5µ ×  L
CRAMP
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RAMP = 5 µA / V ×  (V
IN

− V
OUT

) + 25 µA( )  ×  
t
ON

C
RAMP
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Emulated Current Mode Control  

Advantages Disadvantages 
Single-pole system allows simple  
Type 2 compensation 

Need for slope compensation to eliminate 
sub-harmonic oscillation  
 

Inherent feed forward improves line 
transient performance 

Need for relatively long minimum off-time 
than peak current mode 

Easy implementation of  
cycle-by-cycle current limit 
Easy current share across multiple 
converters 
Noise immunity at leading edge spike 

Minimum on-time can be less than 
peak current mode 

All advantages of peak 
current mode control remain 

Texas Instruments – 2014/15 Power Supply Design Seminar   



1-47 

Design Example #2  
Design Specifications 

Design Specifications 

Input voltage range  7 V to 60 V 

Target output voltage 5 V 

Output current range  0 A to 7 A 

Switching frequency 250 kHz 

Controller  LM5116  

Operating  Values (Theoretical) 
Minimum duty cycle 0.083 

Minimum on-time 0.333 µs 

Maximum duty cycle 0.714 

Maximum on-time 2.857 µs 

Texas Instruments – 2014/15 Power Supply Design Seminar   

optional 5-15 V

RCOMP CCOMP

CHF

COUT1

L

COUT2

CIN

CHBCRAMP

CFT

CSS

RT

RUV1

RUV2

CVCC
RRAMP

RS

RDEM
RFB2

RFB1

VIN

VCC
RAMP

UVLO

RT/SYNC
SS

VCCX
EN
AGND
PGND

COMP FB
VOUT

DEMB

CSG

CS

LO

SW

HO

HB

VIN
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Design Example #2 – Calculation 

Texas Instruments – 2014/15 Power Supply Design Seminar   

•  Choose switching frequency first  
•  Calculate the output filter components (L and C) 
•  Calculate the power stage components (FETs) 

•  WEBENCH®  
•  Helps calculate all of specific values for design 
•  Allows optimization based on design goals 
•  Gives estimates for loop response and efficiency 
•  Provides a complete schematic and bill of materials 
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Design Example #2 – Performance Graphs  
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Efficiency Switching Operation 

Loop Response Transient Response 

Data is taken with LM5116EVM 

VIN = 7 V 

VIN = 24 V 

VIN = 60 V 

VOUT 

IOUT (1 A à 6 A à 1 A)  

Phase 

Gain 

VOUT 

VSW 

2 µs/Div 

500 µs/Div 
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Design Example #2 - Schematic 
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C16

100 µF

C8

2.2 µF
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2.2 µF
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GND
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N/A
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C
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Fixed Frequency Control 
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Questions? 
 
 
 
 
 
 
Stay tuned for 
Variable Frequency! 
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